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We discuss a family of methods for evaluating the thermodynamic functions for a class of 
lattice models that includes the Ising model. It is shown that the usual transfer-matrix method 
can be considered as a member of the family. Some typical members of this family are also 
introduced. Furthermore, we are concerned with the acceleration of these methods. For this 
reason an extra linear extrapolation algorithm, which is based on the member of this family 
related to the transfer-matrix method, is presented. By this algorithm, not only can the bulk 
physical quantities be evaluated more precisely but also an approximation to the boundary 
thermodynamic quantities can be obtained. A new expression for the boundary free energy of 
the Ising model is derived. In addition, the convergence to the thermodynamic limit is proven 
for the scaling method presented by Chorin. Some numerical results for the bulk and 
boundary thermodynamic functions of the Ising model are included. $0 1991 Academic Press, Inc. 

1. INTRODUCTION 

In this paper there are two goals. The first is the development of a family of 
methods for exactly and rapidly evaluating the partition function and other thermo- 
dynamic quantities for a class of finite-lattice models that includes the Ising model. 
All methods in this family are closely related to the linkage algorithm [II, 81. The 
other goal is the development of some extrapolation methods which accelerate the 
convergence of finite-volume data to their thermodynamic limits. 

In [II, X], several methods for reducing the amount of labor required for the 
evaluation of the thermodynamic functions for lattice models were presented. 
Among these methods the basic one is the linkage algorithm, which relates the 
partition function and the free energy of a union of blocks to the same quantities 
evaluated on the component blocks. This linkage algorithm leads to an exact and 
fast enumeration scheme that reduces drastically the labor required for evaluating 
the partition function of a finite lattice: for example, for L Ising spins in the plane, 
the number of terms to be evaluated is reduced from 2= to L2%“. On the other 
hand two methods which accelerate the rate at which quantities evaluated on a 
finite lattice converge to their thermodynamic limits were presented in [II, 81. One 
was called the factored solution. Chorin showed that for Ising spins on a line the 
thermodynamic limit was reached immediately by the factored solution. For a 
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two-dimensional Ising model the numerical results showed that this algorithm 
accelerates the convergence. The other method was “scaling,” which further 
accelerates the convergence of the factored solution. In [II, S] there was only a 
heuristic justification for the method and the numerical results provided were for 
only one lattice size, which was not sufficient to show the convergence to tire 
thermodynamic limit. 

The present paper is based on [II, 81. First, it is demonstrated that from the 
linkage algorithm a family of methods can be derived and the usual transfer-ma?rix 
method can be related to this family. In addition, a very flexible and efficient 
linkage method called the one-spin-at-a-time process is introduced. We show: in 
particular, that the partition function of an rrr x n rectangle can be computed by the 
one-spin-at-a-time process in a time of order 2“‘1n12, compared to a time of order 
2’“‘(r?~ + n) for the usual transfer-matriv A algorithm. This part of the paper can be 
considered as an extension or a further explanation for the linkage algorithm. 
Second, we discuss the further acceleration for the methods in our famiiy. It is shown 
that im mathematics Chorin’s factored solution is an extrapolation method, and that 
in physics it is equivalent to the elimination of boundary effects. Furthermore, an 
extra linear extrapolation algorithm, which is based on the factored solution, for 
the member of this family related to the transfer-matrix method, is presented. By 
this algorithm not only can the bulk physical quantities be evaluated more 
precisely, but also an approximation to the boundary quantities can be obtained at 
the same time. Along the line of the algorithm a new expression for the boumdary 
free energy of the Ising model is derived. Third, some numerical results, which show 
that when the lattice size increases, the thermodynamic functions computed by the 
scaling and the extra linear extrapolation algorithm converge to t 
3ynamic limits. are included. Then a brief review of the factored 
scaling method, and the extra linear extrapolation algorithm is given. 

In order to accelerate the convergence of finite-lattice sequences to their bulk 
limits, various extrapolation methods have been considered [I: 1; I, 21~ In fact. the 
analysis of numerical finite-lattice data by finite-size scaling theory is essentially an 
extrapolation problem. In connexion with this theory, a computationally irn~orta~~ 
development is the phenomenological renormalization presented by ~igbti~gga~c 
[II, ISlo]. In addition, some sequence-transformation met ods have been used tn 
extrapolate the bulk critical parameters from the ta for finite lattices with 
periodic boundary conditions [I, 1; II, 12]. Th sequc~ce-transformation 
methods have yielded some accurate rest&s. Hoivever, they are general methods 
which have been used widely in the numerical analysis Geld and. generally speaking, 
do not have an explicit physical explanation. In the present paper we discuss the 
extrapolation problems, but we consider only the finite lattices with free boundary 
co itions because these lattices are suitably computed by the linkage algorithm. 

Al we do not start with finite-size scaling. Without consi ration of ail finite-size 
effects, our attention is focused on the effect due to the a ngling bonds” at :he 
boundary [I, 7]. Our extrapolation process is equivaient to e~im~mati~g rhis 

boundary effect from bulk thermodynamic quantities computed for a finite system. 
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By our extrapolation method both the bulk and the boundary thermodynamic 
functions can be studied. 

For simplicity, we concentrate on the two-dimensional Ising model with free 
edges. Both bulk and boundary thermodynamic functions are computed. Our 
numerical results are consistent with the theoretical predictions and comparable 
with the results in [I, 5; II, 10; II, 13-151. The numerical results for boundary 
thermodynamic quantities are given here apparently for the first time. The two- 
dimensional Ising model is discussed as an illustration. All of these methods can be 
applied to more complicated lattice systems. 

This paper is organized as follows. In Section 2 we briefly describe the Ising 
model and some relevant theoretical results. In Section 3, in a slightly more general 
way, we discuss the linkage algorithm and then introduce a family of methods 
derived from the linkage. In Section 4 we show that, in essence, the factored 
solution is an extrapolation. In Section 5 we give an extra linear extrapolation 
algorithm. Finally, in Section 6 we present the computational results. 

In this paper we do not discuss the estimates of critical exponents. This work will 
be done in another article. 

2. PROBLEM AND NOTATION 

We briefly describe the ferromagnetic Ising model and some relevant theoretical 
results. 

Consider an m x n rectangular lattice with sites (i, j), 1 5 i 5 M, 1 sj 5 n, carrying 
spins pU, p’ii = f 1. A set of possible values p = {pU} is called a configuration. If a 
free boundary condition is imposed, the energy of a configuration, in appropriate 
units, is 

i=m-I j=n i=m j=n-I 

E(P)=- C 1 Pi,jPi+l,j- C C Pi,jPi,j+l. (2.1) 
i= 1 j=l i=l j=l 

When we consider different boundary conditions, for example, if we suppose 
that the lattice is wrapped as a torus, which means that the periodic boundary 
conditions are imposed both on the rows and on the columns of the lattice, the 
summation limits in (2.1) should be modified properly. 

For the finite lattice the partition function is defined as 

(2.2) 

where p = l/T and T is the temperature. The free energy 4, x n per spin for the finite 
lattice is 

4 n* x n =(mxn)-‘logZ,,H. (2.3) 
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In the thermodynamic limit the bulk free energy per spin is 

Incidentally, the value of 4 does not depend on the shape of the finite volumes used. 
in taking the limit, or on the boundary conditions (see I: ,4]). The bulk internal 
energy U is 

and the bulk specific heat C is 

j2.5; 

In the Ising model a critical point p,, i.e., a non-analytic point of 4, is found., 
sinh(2b,) = 1, /3, = 0.440685... The singularities of various physical quantities are 
characterized by the corresponding critical exponents. The critical exponents of rhe 
Ising model are known. In particular, the bulk specific heat C diverges logarithmi- 
cally at ,G,; in standard notation, the corresponding critical exponents rx = 3’ = Oioiz 
(see [I, 61). 

For a finite lattice at the criticality the behaviours of thermodynamic quantities 
differ from those of their thermodynamic limits and depend on the finite-size 
geometry and boundary conditions, which are described by the finite-size-scaling 
theory [I, 1; II, 1-3; II, 6-71. For example, Fisher and Ferdinand, [II, lo] have 
shown that for an m x n Ising lattice with periodic boundary conditions, the specific 
heat does not diverge at fl,; rather, it exhibits a marked anomaly, whose height 
increases with the lattice size. The position T,,, of the peak can be regarded as a 
pseudo-critical temperature and 

( Tmax - T,)/T;- l/n, n -+ 'cc, m'h fixed, (2.7) 

esides T,,, , there exists another significant temperature, namely the rounding 
temperature T *, at which the specific heat curve for the finite lattice departs 
significantly from the bulk one and 

(T*- T&T,- l/n, n + cc. m!rz fixed. i2.8) 

The reader should refer to [I, 1; II, 91 for details. 
In order to define the boundary thermodynamic quantities, following [I, 1; I, 73, 

we consider an infinitely long ferromagnetic Ising strip consisting of m Paralie 
layers with free boundary conditions. At the temperatures away from the criticality 
we have 
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where d,,, is the free energy per spin of the strip, 4, = lim, _ ~ d,,, x,,. 4, as before, 
is the thermodynamic limit, m-if stands for the correction due to the boundary 
effect, andfis the free energy per unit boundary length (for this boundary each unit 
length corresponds to one statistical degree of freedom). In (2.9), the factor 2 before 
In-If comes from the two boundaries, upper and lower (in some references, for 
example, [I, 71, this factor is omitted). From (2.9) the boundary free energy per 
unit length in the thermodynamic limit is defined as 

.f=2-’ lim m(fJ,,-4) (2.10) 
n1 - il 

(assuming that this limit exists; see [I, 71). Then, the boundary internal energy is 

The boundary specific heat is 

2 de cb=/? 3’ (2.12) 

It is clear that the equations similar to (2.10) which relate the boundary thermo- 
dynamic quantities with the corresponding bulk quantities hold for e and cb. 

Here, it should be pointed out that at the criticality Eq. (2.9) will break down 
and the behaviours of both bulk and boundary thermodynamic quantities are 
predicted by the finite-size-scaling theory [I, 1; I, 71. Presumably, the rounding 
temperature T* is in some sense the limit of validity of the simple decompositions 
of the thermodynamic quantities into the bulk terms plus size-dependent correc- 
tions [I, 11. 

In the two-dimensional Ising model there is only one critical point; i.e., the 
singularities in the boundary thermodynamic quantities occur exactly at the same 
temperature as those in the bulk properties. It is known that in the thermodynamic 
limit e diverges logarithmically at /I, and superimposed on the logarithmic infinity, 
there is a discontinuity in e at /I,, i.e., 

lim (e(B,+6)-e(P,-6))=L. 
6-0, 

(2.13) 

In the situation of free edges L = $ (if the factor 2 is omitted in (2.9), L = 1). In 
physics this phenomenon can be explained by “latent heat.” The boundary specilic 
heat cb has a singularity t ~ ’ (here t = T/T, - 1 ), which means that cb has opposite 
signs above and below T,. The critical exponents of cb are CC, = ~6 = 1 [I, 71. 

Now the problems are how to evaluate the thermodynamic quantities for the 
finite Ising model and how to accelerate their convergences to the corresponding 
thermodynamic limits. 
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3. THE LINKAGE ALGQRITHM 

The successive linkage algorithm presented by A. I. Chorin evaluates the 
partition function of a union of finite-lattice blocks in terms of the partition 
functions of the component blocks [II, 81. In fact, by successive linkage a family of 
algorithms can be constructed. Any algorithm in this family is characterized by 
successive increases in the lattice size; however, each one has its own way to choose 
the component blocks. Here, we introduce these algorithms in a slightly generalized 
way. 

First, we give the concept of the conditional (or parametrized) partition function. 
Consider a lattice A and let S be a subset of A. For a given SE ( - 1. 1 IS+ the 
partition function for A conditioned (or parametrized) on S is defined as 

where g 0s denotes the spin configuration which equals G on A’,,.9 and equals s on 
S, and /?(a@~) is given by (2.1). Note that if S, cs?, we have 

A”. SI = 
1, c A,?$,. . (3.2 j 

S’E : ~ 1. 1 }% S! 

Especially, the partition function Z” for a lattice A can be expressed as AA. rp. where 
4 is the empty set: or 

z”= 1 A$” (3.3) 
se:-l,I:’ 

for any S c A. 
Next, we consider the linkage of two sets. Let A and B be disjoint finite subsets 

of a graph G. Let A, (resp. BA) be the set of sites in ,4 (resp. 8) which are nearest 
neighbours of one or more sites in B (resp. A). Let S (resp. T) be a subset of A 
(resp. Bf which contains A, (resp. B,). Let R be a subset of S*U 7’. Then, the 
identity 

holds. Here 1 denotes restriction of a spin configuration to a subset and 

E(s; t) E interaction energy between s and t 

=E(s@t)-E(s)-E(t). (3.5 j 

Equation (3.4) expresses the linkage of disjoint sets A and B to form a combined 
set A u B. In order to perform the linkage, it is necessary that the partition 
functions of A and B be parametrized by sets S and T which contain at least the 
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relevant boundary points A, and B,, respectively; otherwise it would be impossible 
to compute the interaction energy between A and B. However, the sets S and T 
may optionally be larger than this; this can be useful in order to make possible 
subsequent linkage steps (as is explained below). Finally, the resulting partition 
function for A v B may be parametrized by any desired subset R c S u T; the spins 
in (Sv T)\R are summed over. Usually the graph G will be the simple-(hyper) 
cubic lattice Zd with nearest-neighbor linkages, but the more general formalism 
allows treatment of other lattices, non-nearest- neighbor interactions, periodic and 
anti-periodic boundary conditions, etc. 

The computational labor required for this linkage step is of order 2’(‘” r)l times 
the labor involved in the computation of exp( -PE(..., . ..)). The latter labor is 0( 1) 
if it is dominated by the computation of the exponential, or 0( # (A, B)) if it is 
dominated by the computation of the interaction energy-here # (A, B) is the num- 
ber of bonds of G which link A with B. 

Now we introduce the successive linkage algorithm. In order to evaluate the 
partition function of a large lattice, we can start with a small block, then repeatedly 
apply the two-set linkage step explained, above until the required lattice has been 
formed. It is obvious that the initial block A and the successive linked blocks B’s 
can be chosen in many different ways: thus, from these different choices a family of 
methods can be formed. In some cases the linked blocks B’s in any step have the 
same geometry as the initial block. One such block will be called a basic block. The 
family of successive linkage algorithms includes special significant cases, some of 
which are listed below. 

(a) The Transfer-Matrix Method 

The usual transfer-matrix method can be carried out by a successive linkage 
algorithm. Consider an m x n Ising model with free boundary conditions. The 
partition function Z,, x n is given by (2.2). Denote a column configuration by oj, i.e., 

Oj = (Pl, j, PI?, j, ...2 Pm.j); 

then, there is a total of 2” possible configurations for each 0. We can associate each 
configuration with an integer between 1 and 2” according to the rule 

0 = o(i), i + 1 + t max(O, pk) . 2k ~ I. (3.6) 
k=l 

If we define 

m-l 

'lCaj)= - C Pi,jPi+l,j' 
i= 1 

ht"j9 Oj+l)= - f P'i,jPLi.j+l 
i=l 
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then, the partition function z,~ x n can be written as 

z ,nxn=(m, L”-?i), (3.7 j 

where a = (zLI) ct2, ...I a*,)* is a vector defined by s1~=exp(-/I/2 Vr(a(i))), 
s = 1, 2, ..‘) 2’“. and L is a 2” x 2” matrix whose (6, c’) component is given by 

Usually, matrix L is called the transfer matrix. Note that matrix L is symmetric and 
its elements are all positive; therefore, it has complete eigenvectors and its maxi- 
mum eigenvalue A1 is strictly nondegenerate. Thus, from (3.7) it is easy to see that 
for an m x a Ising strip the free energy per spin is given by 

=rlcllogi,. (3~9) 

The conventional transfer-matrix method first forms the 2”’ x 2’” matrix L, then, by 
a certain numerical method, calculates the dominant eigenvalue i1 of L. Thus, an 
approximation to dmX m is obtained. 

However, from (3.9) we know that for sufficiently large n, d,,, x ,~ can alsc be 
considered as an approximation to 4, x oc. By a successive linkage algorithm for 
any n? x n rectangular lattice the thermodynamic quantities can be calculated; that 
is to say, in essence, the transfer-matrix method can be carried out by a successive 
linkage algorithm. For this purpose it is only necessary that in Eq. (3.4) we ta 
set A to be an 171 x I rectangle parametrized by S = its rightmost column, the set B 
to be an n? x 1 rectangle (vertical column) parametrized by T= B, and the set R to 
be T. Then A v B is an m x (I+ 1) rectangle, parametrized by R = its ~ghtmost 
column, so that the procedure can continue repeatedly; thus, for any large n, Z,,,: 
can be computed, and therefore, the approximation to I$,~ r with any accuracy can 
be obtained. For simplicity, we can first take I = 1, i.e., A = B = an .W x I rectangle 
parametrized by itself. This vertical column containing tn spins is a 

By the above-mentioned method, in order to compute the partition function 
z m x ,I for an m x n rectangle the computational labor is roughly of order .L?%. 
There are 2’“’ possible configurations of spins in the two columns to be linked at 
each step and this linkage step must be repeated n times. For each hnkage step, it 
is necessary to compute the interactive energy E(s, t) for any possible configuration 
of s and t; however, it is noted that these interactive energys do not vary with .‘T, 
so, we can set up a table of E(s, t) for all possible pairs of s and t beforehand. The 
computational labor for the pre-processing (setting up the table) is of order Z2’%. 
Thus, the local labor is of order 2*“(m + H). 

It is also possible to consider the linkage method in which at each stage the num- 
ber of columns of the rectangle currently being processed is doubled. We begin from 
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an in x 2 rectangle and in each step we need to parametrize both vertical edges of 
the present block. In order to compute an m x n lattice by this method, the labor 
is roughly of order 2”” log, n (the procedure should be repeated log, n times, at 
each step there are 22” configurations, and for each configuration the labor is 
roughly of order 22m). 

In principle, the above successive linkage algorithm can be used instead of the 
usual transfer-matrix method. However, it is difficult to compare their computa- 
tional labors because when an m is given, we do not know, for the above- 
mentioned method, how large an n is needed. But, there is no need to be concerned 
about this, as in Section 4 it is demonstrated that by a slightly different successive 
linkage algorithm, followed by a simple extrapolation, the transfer-matrix method 
can be carried out thoroughly, and in comparison with the conventional transfer- 
matrix method, the computational labor is drastically reduced. 

It should be pointed out that the above-mentional successive linkage algorithm 
can be applied to rectangles with periodic boundary conditions in the vertical (m) 
direction. Note also that the successive linkage algorithm can be generalized to the 
three-dimensional case. 

(b) Chorin’s Method for Linkage of Four Blocks 

In [II, 81, A. J. Chorin has presented a method for linkage of four blocks. This 
method relates closely to an extrapolation algorithm called the particular factored 
solution, which is discussed in the next section. 

Consider an m x n Ising lattice, which we take as a basic block. For the basic 
block the partition function is parametrized on two adjacent edges. Note that for 
any pair of adjacent edges, because of the symmetry, the sets of conditional parti- 
tion functions are the same. From (3.3), for the basic block the partition function 
ZB can be expressed as 

where S,, stands for the bottom edge and S, for the right edge. From A~~S~sr, as 
shown in Fig. 1, a 2m x 2m lattice containing four basic blocks can be constructed. 
The partition function of two blocks, parametrized on S,, u S2, is 

228 = c A 2w&” s2, (3.11) 
sk,Os2 

where 

(3.12) 

In (3.12), the symbols are simplified in comparison with those in (3.4). However for 
the special case, the meaning is still clear. 
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FIG. 1. Chorin’s method for linkage of four blocks. 

In the next step, we have 

The cost of computing Z,, x n, parametrized on two adjacent edges is of order 2’“‘. 
This parametrized partition function can then be stored and the three linkage steps 
require an amount of labor of order 24” each, which is negligible compare 
if 171 is large; therefore the cost of computing ZZnl x Znt by the method just described 

is of order 2”2. The cost of evaluating Z,, x zm directly, without linkage, is of order 
24in’. The linkage algorithm reduces the amount of labor by a factor of IV 23m’. This 

algorithm has another advantage: by a simple method which is explained ln 
Section 4, its results can be extrapolated easily. 
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However, the algorithm just described also has a defect: the input is the partition 
function of an m x m block parametrized by the spins on its two adjacent edges, but 
the output is the partition function of a 2m x 2nz block parametrized by nothing (or 
parametrized by some of the internal spins si, 0 S, @ s1 @ s2 0 s3 0 sq 0 s5 0 sg), so 
the procedure cannot be repeated to construct a still large block. In principle, we 
can overcome this disadvantage, by designing a method for repeated linkage of 
square blocks. Let the input be the partition function of an m x m block, 
parametrized by all its boundary spins. Then, successive linkage as shown in Fig. 1 
yields the partition function of a 2m x 2m block, again parametrized by all its 
boundary spins, and so the process can be repeated to form a 4m x 4m block, an 
8m x 8m block, etc. Then it is easy to see that the labor for computing Z2k,,x2km (nz 
fixed, k large) is dominated by the last linkage step (i.e., 2k- ‘rn -+ 2km), and is of 
order 24 .2k’n. That is, the labor for computing Z,,, (at least for n equal to a power 
of 2 times a small integer) is of order 24n, as compared to 2”’ for a direct evaluation. 
However, this algorithm has a severe difficulty: it demands too much storage space. 
The partition function parametrized by all boundary spins for a 4 x 4 block has 2l’ 
terms, and for an 8 x 8 block the number’ increases rapidly to 228, and each term 
should be stored separately. For this reason, it is difficult to perform this algorithm 
on the present computers. 

Obviously, there are also some methods intermediate between the method for 
linkage of four blocks and the above-mentioned ideal method. They have the same 
disadvantage of principles as method (b), but they might satisfy some special need. 
However, we do not dwell on them. Instead of describing particular algorithms, 
here we introduce the one-spin-at-a-time process, which is a simple and efficient 
algorithm. Moreover, many other successive linkage algorithms, e.g., methods (a) 
and (b), can be carried out by this process. 

(c) One-Spin-at-a-Time Process 

In this algorithm we use one spin as the basic block; i.e., we start with one spin 
and during the successive linkage process in each step only one spin is added. As 
an example, we show how the partition function of an m x n lattice can be com- 
puted by this process. This process was first used by A. J. Chorin. 

First, we link two spins; pi, 1 and p2, i, as shown in Fig. 2a; they are arranged in 
a column. For the two spins there are four configurations: (- 1, -l), (- 1, l), 
(1, - 1 ), ( 1, 1). The corresponding conditional partition functions are /1~ i, _ I = eP, 
A -l,l=e -8, ‘4 l,-l=e -8, and n i, i = ep, respectively, which will be stored in an 
array A containing four elements and the corresponding subscripts are calculated 
according to rule (3.6). Thus, if the subscript is odd, it means that this conditional 
partition function corresponds to a configuration, for which the last spin is down; 
otherwise, the last spin is up. Now we add a spin ,u~, i to the block formed by pi, i 
and p2, i on the bottom and consider the partition function for the augmented 
block. The partition function for the three-spin block (pl, r, p?, I, pX, L) conditioned 
on itself has 23 terms, and each term will be stored in an element of an array B and 
calculated as follows: 
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When the added spin p3. 1 is up, i.e., p3, 1 = 1, 

B(2i)=A(i) * e-p, i= I. 3, 

B(2i) = A(i) * 2, i = 2, 4. 

When the added spin p3. 1 is down, i.e., ,u,, I = - 1, 

B(2i- 1)=&i) * 620, i= 1. 3, 

B(2i- 1)=.4(i) * cD, i = 2, 4. 

Note that for array B, the subscripts still obey rule (3.6). We continue the process 
until an w x 1 column has been formed. For the column containing n: spins. the 

ia) 

FLG. 2. Some possible choices of blocks A and B. 
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partition function conditioned on itself has 2” terms, which are stored in an array 
containing 2”’ elements. For simplicity, we continue to denote the array by charac- 
ter A. Because rule (3.6) is still correct, we can determine from the subscript of any 
element of A the configuration which corresponds to the conditional partition 
function stored in this element. 

Now suppose that an in x (I - 1) lattice has been constructed, and that its 
partition function is parametrized by its rightmost column and stored in an array 
A containing 2” elements according to rule (3.6). We consider how an m x I lattice 
can be calculated by continuously using the one-spin-at-a-time process. 

First, spin ,u i, I is added. Note that for the nz x (I- 1) lattice already formed, spin 
,~i,[ interacts only with spin pi,,- 1, and for each A(i), the value of pi, 1-i can be 
determined from the corresponding subscript i. Thus, from the linkage of pi,[ for 
each A(i) we obtain two terms: one is A(i) epP1,‘ml, another is A(i) ePap’.‘-‘, and they 
correspond to pi, [= 1 and pi,,= - 1, respectively. So, there is a total of 2”‘+’ 
terms, which give the partition function of the nz x (I- 1) lattice with spin pi,, 
added, parametrized by the (I- 1)st column and pi, [. Note that after the linkage 
of pl, !, the value taken by spin pi. I- i is useless, so the partition function after 
linkage of ,ui, I can be parametrized only by spins pl, I, p2. ,- i , p3, IP i , . . . . ,u~, ,- i . 
That is to say, the 2”‘+’ terms just obtained can be reduced to 2” terms, and they 
can still be stored in the original array A. However, at this moment, the subscripts 
of A correspond to the configurations of set (pi, [, p2, IP i, . . . . pm, IP i). 

Next, we adjoint spin p2,, to the lattice part just formed. The procedure is very 
similar to that described above for the linkage of spin pi,[. The only difference is 
that in order to calculate the new conditional partition functions, for each A(i), we 
need to abstract the information about the values taken by spins pi,! and p2,!- i 
from subscript i, because both pi, I and p2, [-, will interact with ,M~, /. Then, for each 
A(i), we obtain two terms; A(i) eB(PL~Jf~l~‘-l) and A(i) ePp(P1,i+Pz,‘mL), which 
correspond to ,u?, /= 1 and p 2, /= - 1, respectively. There is also a total of 2”” 
terms, which, similarly, can be reduced to 2”’ terms, giving the partition function for 
the m x (I- 1) lattice plus spins /A,. I and ,u2, I parametrized on set (pi, II p2, [, p3, IP i, 
. ..) pm*, !-i). Obviously, this procedure can be repeated until the whole m x n lattice 
has been formed. Then, the partition function for the whole m x n lattice, 
parametrized by its last column, is obtained. 

In the above the one-spin-at-a-time process is merely sketched. Here some 
additional explanations should be given: 

First, note that Eq. (3.4) can be differentiated with respect to /I, so the one-spin- 
at-a-time process yields not only the free energy for an m x n lattice but also the 
internal energy and specific heat. 

Second, in the above algorithm, the evaluation of the exponential factor t? (or 
ePB) can be done once and for all. This will reduce the computational labor 
significantly. 

Third, the one-spin-at-a-time process is very flexible and can be used in many dif- 
ferent cases. For example, the usual transfer-matrix method and Chorin’s method 
for linkage of four blocks can both be carried out by this process, and obviously, 
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this algorithm can also be generalized to a three-dimensional model. However, :his 
algorithm is not suitable for models with periodic boundary condition. Thus. for 
this algorithm it is necessary to consider extrapolation methods that eliminate 
boundary effects. 

Finally, we estimate the computational labor required by the one-spin-at-a-time 
process. In order to calculate the conditional partition functions for the first colm=nn 
of an m x II lattice, the computational labor must be of order 2’“. Then, if we take 
the labor required by a one-spin linkage as a unit, the total computational labor 
will be of order 2”mn. Thus, !f we use the one-spin-at-a-rime process to perjorm :he 
muai transfer-nzatlr method, it will be better thalz algorithm (a). 

More generally, consider an arbitrary finite graph G with N vertices, and suppose 
that iye wish to compute the partition function of the Ising model of G. Choose an 
ordering of the vertices, say ,Y:, x~, . . . . x,~. For each j (1 Q S M- l), let Mj be the 
number of vertices x1, .x2, . . . . .x~ that are adjacent to one or more of the vertices 
.x ~ + i I -yj+ >, . . . . x.~, and let E, be the number of edges connecting x1, zi7, ..I, ‘c.i to 
xj+ 1’ Then the computational labor for the one-spin-at-a-time process is of order 
C;!L-,,’ 2-“1 Ei, and the storage requirement is 2.‘“, where M = maxl 5,j S y ~ i M1. 
Yote the importance of finding a “good” ordening of the vertices, i.e., one which 
minimize 111 (similar problems arise in sparse Gaussian elimi.nation). 

4. THE FACTORED SOLUTION-AN EX~APOLATION METHOD 

In [II, 81: Chorin has shown that the successive linkage of blocks results in an 
approximate factorization of the partition function of a lattice into terms associated 
with small blocks far from the unconnected edge. On this basis he has proposed an 
approximate factorization algorithm which accelerates the convergence of the quan- 
tities computed on a finite lattice to their thermodynamic limits. In this section we 
introduce this algorithm and demonstrate that this algorithm, i.e., the factored 
solution, is essentially an extrapolation method. 

Consider a successive linkage process, in which an nz x m lattice B is taken as a 
basic block. Suppose that a lattice A consisting of I basic blocks has already been 
formed and parametrized in a proper manner. In order to construct a still larger 
block, we continue in the next step to adjoin a basic block B to A, and according 
to Eqs. (3.4) and (3.3), the partition function ZAuB can be computed. If we define 

th.en, p,, 1 can be considered as the contribution of the newly connected (I-t- 1 jst 
block to the partition function Z” ” B, and Eq. (4.1) gives a factorization of Z’ ‘j ‘~ 
If the factors 2, (I= 1, 2, . ..) obtained in a successive linkage process converge to a 
limit 2,,, (for the one-dimensional Ising model, the existence of a simiiar limit is 
rigorously proved; for the two-dimensional case, generally speaking, it is ar 
assumption), then, 
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where Z’ stands for the partition function of a lattice consisting of I basic blocks. 
Equation (4.2) shows that (l/m’) log 2, x )12 is the free energy per spin in the ther- 
modynamic limit. Note that Eqs. (4.2), (4.1), and (3.4) can be differentiated with 
respect to /I and yield successive approximations U,,, x m + U, C, x nr + C. Hereafter, 
for any sets A and B, the general operation expressed by (4.1) is called a factored 
operation. 

In practice, it is impossible to obtain the limit factor .??,,,, m. An alternative 
approach is to perform the factored operation only once; i.e., we start with a lattice 
A chosen properly and then adjoin to it another B. Thus, according to (4.1), 2,;. 
is calculated and used as an approximation to 2, x m in (4.2). 

Next, for algorithms (a) and (b), explained in Section 3, we demonstrate how the 
factorization approximations can be carried out. 

In the preceding section, it was shown that for an rn x n Ising model with free 
boundary conditions, the partition function is 

Z I?, x II = (a, L” ~ ICC), (4.3) 

where CI is a vector and L is a matrix, both of which are well-defined. Equation (4.3) 
can be calculated by a successive linkage algorithm, in which an m x 1 column is 
taken as a basic block, and in essence, this is the transfer-matrix method. From 
(4.3) it is easy to see that adjoining a column is equivalent to raising L by 
one power. Now consider the factorization approximation, and in (4.1), let 
ZAvB=Zmx(,,+r, and ZA=Zmxn, thus, from (4.2), the free energy per spin for an 
m x c(j Ising strip can be approximated by 

4 m,n+l +og (~~$:~)=~(log~,+O((~~-l)), (4.4) 

where A, is the largest eigenvalue of the 2” x 2” matrix L. For fixed nz and suf- 
ficiently large n, fj,,,l is a good approximation to m- ’ log ;1, and has an error 
O((&/L,)n). Thus, the factorization approximation (4.4) allows an easy extra- 
polation from an m x n lattice to an m x cc lattice. The more important thing is that 
we know the factored operation expressed by (4.4) is equivalent to computing the 
maximum eigenvalue A1 of the transfer matrix L by the power method with n 
iterations. Thus, the usual transfer-matrix method can be carried out thoroughly by 
a successive linkage algorithm followed by an extrapolation. 

From now on the method given by (4.4) will be called the factored solz4rio~z by 
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coiunzrz. We note that the accuracy obtained by this method is restricted by LX. 
Visually, the reason for this is that it is an extrapolation along only one direction 
i.e., the direction along which parameter n increases. In [II, g], Chorin proposed 
another factorization algorithm based on the method for linkage of four blocks. 
which can be considered as an extrapolation along m and n in two directions. 

For the method for linkage of four blocks, as explained in Section 3, an KV x n; 
Ising lattice is taken as a basic block. According to formulas (3.13) and (3.14): the 
partition functions Z3’ and ZdB can be computed. In order to consider the factored 
approximation, in (4.1 f, let Z” ” B = Z@ ( = ZZln y Zm ), Z” = Z3B. and 

thus, a factored solution is obtained. For convenience, hereafter, this solution is 
called the particular factored solution. Numerical tests (see Section 6) have shown 
that the particular factored solution accelerates the convergence to the thermo 
dynamic limit, and it gives more accurate results than the factored solution by 
column and many other possible factored approximations which correspond to 
various different choices of sets A and B in the general formula (4.1). Now we 
explain heuristically the physical mechanism which we believe underlines this faster 
convergence. 

It is well known that phase transitions in statistical mechanical calculations arise 
only in the thermodynamic limit. The thermodynamic limit requires that the linear 
dimension of a model system approach infinity. However, in any pratical computa- 
tion only a finite lattice can be considered, An important part of the finite-size elect 
is due to the “dangling bonds” on the boundary [I7 1; I, 3; I. 61. For the two- 
dimensional Ising model an inner spin has four adjacent spins. A pair of adjacent 
spins are interrelated through a bond and interact with each other. However; fer 
free boundary conditions, the spins located on the boundary sites have no 
interaction with the outside, and thus the contribution of a boundary spin to the 
thermodynamic quantities differs from that of an inner spin. Since: in general, a un.it 
boundary length corresponds to a dangling bond, this effect is proportional to the 
boundary length for the whole lattice system. More precisely, for a finite two- 
dimensional Ising lattice containing N sites and having boundary lenght L, ?‘rom 
thermodynamics we can expect that [I, l] 

where 4.v is the free energy per spin computed from the finite lattice, # is the 
thermodynamic limit, and f stands for the correction per unit boundary length due 
to the “dangling bonds.” Now we inspect the particular factored solution from the 
point of view of boundary effects. It is found that although the rectangular lattice 
A u B and the sub-lattice A in Fig. 2b contain different numbers of spins, they have 
the same boundary length. From (4.6) it is clear that log Z”” E and log Z-’ contain 
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the same boundary correction terms; that is to say, they contain almost the same 
boundary effect as that induced by the “dangling bonds.” Therefore, when the 
factored operation is executed, the effect is almost cancelled. That is the reason 
why the particular factored solution is a better approximation to the one in the 
thermodynamic limit. 

From the above discussion it is plausible that the particular factored solution is 
better than the factored solution by column. For the factored solution by column, 
as shown in Fig. 2a, the lattice A u B is an nz x (n + 1) rectangle and the sub-lattice 
A is an m x n rectangle. They have different boundary lengths. After the factored 
operation some boundary effects induced by the “dangling bonds” are still included 
in the numerical results. Thus, the particular factored solution is likely to be more 
accurate. It should be pointed out that for the factored solution by column, if 
periodic boundary conditions in the vertical direction are used, the boundary effects 
can also almost be cancelled. However, we would rather use the free boundary 
conditions than the periodic ones. The reason is that for free boundary conditions, 
the computation can be performed by the one-spin-at-a-time process, which is more 
efficient. In addition, it is shown in the next section that by a simple extra linear 
extrapolation, from the factored solution by column with free boundary conditions, 
not only can the bulk thermodynamic quantities be evaluated more precisely but 
also the approximations to the boundary thermodynamic quantities can be 
obtained at the same time. 

In order to let sub-lattice A have the same boundary length as lattice A u B, 
lattice A can be chosen in many different ways. One such choice is shown in Fig. 2c, 
for which lattice A has a more complex shape. From (4.5), this choice corresponds 
to a factored method. For simplicity, hereafter we call it the generalized factored 
solution. Now we argue heuristically that the particular factored solution is likely to 
be better than the generalized one. In this discussion we are concerned with the spin 
effects which are located on corners. For the two-dimensional ferromagnetic Ising 
model in various wedge geometries the corner spin magnetization has been 
investigated by Barber et al. in [II, 41, but up to now the corner spin thermo- 
dynamic effect has not been clear, so we can discuss this question only qualitatively. 
However, the following discussion appears to be reasonable and the numerical 
calculations displayed in Table II and III support our conclusion. The reader 
should refer to [I, 1; I, 3; I, 7; II, 41 for related discussions. 

Let us first analyze the boundary effect induced by “dangling bonds” more 
carefully. For an m x n lattice the boundary length is 2(m + n) and there are 
2(m + n) - 4 spins located on the boundary. The boundary length is not equal to 
the boundary spin number because there are four convex corners. If the lattice were 
larger (e.g., (m + 1) x (n + l)), then the 2(m + n) - 4 spins which are currently on 
the boundary would interact with 2(m + n) spins surrounding them on the outside; 
therefore, we can consider that the boundary effect is equal to the interactions 
between the 2(m + n) - 4 boundary spins and the 2(m + n) imaged spins. A spin 
located on a convex corner has two dangling bonds and a general boundary spin 
has only one; thus, they have different contributions to the boundary effects. By this 
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consideration, for an m x tz lattice with free boundary conditions, instead of 
Eq. (4.6) we conjecture that the expression 

N~,,=N~+LS+4C,+a(L-‘i, L-,x !4.7j 

should be correct. Here IV= m x n, L = 2(m + n); brv., #, f have the same meanings 
as in (4.6); and C, represents the correction due to one convex corner. Tke last 
term, o(L-I), represents all the other finite-size effects. This seems reasonable 
because, after the “dangling bonds” effect has been separated from the others, the 
remaining finite-size effect can be considered as approximately the effect for a lattice 
with periodic boundary conditions, which is exponentialiy decreasing. For the 
sub-lattice A shown in Fig. 2b, the boundary spin number reduces to 2(m -+ n) - 5. 
because there are five convex corners. On the other hand. the spin number which 
surrounds this sub-lattice A is 2(n1+ n) - 1. This number is one less than the 
boundary length. The reason is similar: there is also a concave corner in A. The :wo 
boundary spins which form the concave corner would interact with only one 
imaged spin outside A; thus, the effects of these spins aHso differ from the effect of 
the general boundary spins. For the sub-lattice A the boundary effect due to the 
“‘dangling bonds” can be considered as the interaction between 2(~z + n) - 5 
boundary spins and 2(nz + n) - 1 imaged spins. By a consideration similar to (Y’7iq 
for this sub-lattice we have 

No(b4; = Nod + Lf+ 5c, + c, + o(L -I), (4.8) 

where, N, is the number of spins contained in A, and C, represents the correction 
due to a concave corner. Further, we consider a general sub-lattice A, as shown in 

Fig. 2c, which still has the boundary length L, but I (!z 5) convex corners (in the 
example shown in Fig. 2c, I = 7). In company with the I convex corners there mvst 
be I- 4 concave corners. Thus for a general A, the boundary effect can be 
considered as the interactions between 2(m +n) -i boundary spins and 
2(~1+ n ) - (! - 4) imaged spins Instead of (4.8) generally we have 

N,~,~=N,~+Lf+IC,+(1-4)C,+o(L~,), E4.9) 

From (4.7) and (4.8) we know that the boundary effects due to the “dangling 
bonds” for the whole lattice and the sub-lattice A in Fig. 2b are not exactly the 
same; the difference between them is approximately C, + C,, However, for a 
general sub-lattice A with I convex corners, the difference is (I- 4)(C: +- CZ). It is 
plausible that the larger the number 1 is, the more different the boundary effects 
between the m x II lattice and the sub-lattice A are. Consequently, after the factored 
operation more boundary effects will remain in log Z,. It affects the accuracy 
strongly. 

From the above discussion we know that the particular factored solution is better 
than any general factored one, because in Fig. 2b, i= 5, it is the possible minimum 
value. Thus, for the particular factored solution the boundary effects due to the 
“dangling bonds” are almost cancelled. 



124 LEI GONG-YAN 

Of course, in order to have I= 5, it is not necessary for B to be exactly half the 
width of A u B. There are still some possible choices. However, numerical tests 
indicate that only for those B’s whose widths are slightly less than half the width 
of A u B are the results comparable with the particular factored solution. And for 
a 4 x 4 lattice the particular factored solution gives the best result. Therefore, we 
prefer the particular factored solution over the others. 

5. AN EXTRA LINEAR EXTRAPOLATION ALGORITHM 

In the preceding section we showed that in essence the factored approximation 
is an extrapolation method. Especially, the particular factored solution and the 
factored solution by column were discussed. In this section we consider their further 
accelerations. 

In [II, 81 a further acceleration method, which is based on the particular fac- 
tored solution and is called the scaling, was presented. The basic idea is as follows: 
imagine a “spin bath” infinitely extending to the top and the right of a 2m x 2m 
lattice. The spin bath imposes different weights on the configurations formed by the 
spins located on the top and the right boundary of the finite lattice. The method 
is an iterative one. It starts with a guess of the weights, which can be obtained as 
follows: For the 2m x 2m finite lattice, we denote the configuration of its top and 
right spins by si @ s2 @ s3 @ sq, each sj representing m-spins. The first guess of the 
weights can be expressed as 

where the AZ are given by the partition function of an m x m lattice conditioned on 
one edge (see Eq. (3.1)). Using the weights we can compute the particular factored 
solution for the 2m x 2m lattice with spin bath. From this computation an improved 
guess for the weights can be obtained as follows. 

We assume that the 4m spins si OS, OS, OS, are grouped into 2nz pairs. If for 
any configuration of these spins there is a pair in which two adjacent spins are mis- 
aligned, then the improved weigth A,, 8S20S~oy = 0. For the other configurations, in 
each pair the two spins have the same value, and thus, they can be represented by 
one “block spin”. There are 2m block spins totally, and we denote them by S, 0 s’, 
Correspondingly, the weights A,, oSzoS,8S4 can be written as n i, 8r‘2. Note that 
during the computation of the particular factored solution for the 2m x 2m lattice 
with spin bath, the partition function of the sublattice shown in Fig. 1 conditioned 
on ss @ s6 can be obtained. Let 

thus, a new set of weights is obtained, by which the iterative process can be 
repeated until the approximations to Z converge. The above method can be 
considered as a reverse Kadanoff scaling. 
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In [Ii, 81 some values of 4, U, and C computed by the scaling method for a 4 x 4 
Ising model are displayed. The convergence to the thermodynamic limit has not 
been proved. 

In this paper we use the scaling method to compute the Ising model with various 
sizes. The numerical test shows that the iterative process converges and the results 
are satisfied, which will be discussed in the next section. Here, we focus attention 
on the further acceleration of the factored solution by column. 

From the preceding section we know that after the corresponding factored opera- 
tion some boundary effects remain in the factored solution by column. WOY~ we 
inspect this point more precisely. 

In Fig. Za, where the factored solution by column is sketched, .4 u 3 is 
an n! x (1~ + 1) lattice and A is an m x tl lattice. If we denote the free energy 
per spin for lattice A u B by d,,, x (n+ ,)? then the free energy of the whole 1atGce 
is 4n+ ud,,!x,,l+l,. Similarly, for the lattice A the corresponding quantity 
is n7tzq5,,, x II. When the factored operation is perfornred, the difference 
f77@7 + 1) (bnl x (li + , ) - mnd,, x ,, is computed. We study it in detail. Becatse 
nl(n + 1 )-t~n = n?. in the difference there should be a term which approximates 
rrz-spin free energy. This term can be expressed approximately as m& where #: as 
before, is the free energy per spin in the thermodynamic limit. Moreover, some 
boundary effects are included in the difference. For the lattice A u E3 and sub-lattice 
A shown in Fig. 2a, the vertical boundaries have the same length, but ir! the 
horizontal direction the boundary of A u B is one unit longer than the boundary 
of A. If we note that there are two horizontal boundaries, up and down, and rccali 
that the boundary effect per unit length is denoted by S in Section 2, then there 
should be a term 2f in the difference. In summary, if we denote the difference by 
4 1 nl ,I+l. we have 

md ,n. n + I = tn(n + 1) d,, x (n + 1, - ~wh, x I! 

Z mx(n+!) =log z 
,,z x ,1 

=n7q5+Jf+o(l), i5.l i 

where O( 1) denotes the error due to the other finite-size effects and goes to zero as 
n7, n tend to infinity. As compared with (4.4) it is clear that the #,,,. ,i + I defined by 
(5.1) is just the factored solution by column. And we know that the term 2l’in (5.1) 
reduces the accuracy of #,,,, ,I + 1 as an approximation to b. However, the term can 
be eliminated easily. Besides 4,,, ,1 + 1 we compute 4, ~ 1, n. according to (5.1) 

(m - 1) b,,,+ L, ,i = (m - 1) I$ +2f+ O( 1). (52) 

Subtracting (5.2) from (5.1), we have 

iJ m,n+l = imp ,n,N+l-(‘n--!)~,,,~,.,, 
=$+0(l). ;“;.3j 
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bLn+l is a better approximation to 4 than the factored solution by column dm, ,r + 1. 
Similar approximations to the bulk internal energy U and the bulk specific heat C 
can be derived in the same way and are denoted by 8,, n + 1 and c,,,, n + i, respec- 
tively. 

Here, it should be pointed out that to eliminate the term 2f from (5.1) we can 
use any dp,q; the only requirement is p # m. We chose d,, ~ ,, n for convenience of 
programming. In the pratical computation we take II = nz. 

In the following the expression (5.3) is explained in a different way. If the m x n 
Ising model is wrapped on a torus and in the thermodynamic limit n is allowed to 
approach infinity before nz, following Thompson [I, 61, we have 

d= lim 171-l 
nz + c.2 

log AI = i log(2 sinh(21)) 

=i log(2 sinh(2b)) + (271))’ j: cash- ‘((cosh(2P) coth(2B) - cos(8)) dtl, (5.4) 

where I, is the maximum eigenvalue of the corresponding 2” by 2” transfer matrix 
and ljk is defined by cosh(y,) = cosh(2B) coth(2fl) - cos(rrk/m). From (5.4) we know 
that using nz -’ log A1 instead of 4 corresponds to using the summation 
(2m)-’ ZZIF’ 172k+l instead of the integral. From the point of view of numerical 
analysis this means that the integral is calculated by the rectangle rule formula, and 
the number of intervals is proportional to m. On the other hand we know from 
(4.4) that the factored solution by column dm,n+ i is an approximation to 
nz-‘log Ai. Thus we see that the algorithm expressed by (5.3) can be considered as 
the Richarson extrapolation method in numerical analysis, which improves the 
accuracy of the approximate integral calculation. From now on (5.3) is called the 
extra linear extrapolation algorithm. 

From (5.1 j and (5.2) we can also derive a formula to compute the boundary free 
energy J However, we should make a further assumption on the term o( 1) appear- 
ing in (5.1). Denoting the term by $(m, nz + l), we asume not only $(m, n + 1) + 0 
as m,n+ca, but also 

nz~(m-1,n)-(nz-1)~(m,n+l)-+O, as m,n+ co. (5.5) 

This assumption means that either the term o(l) has a higher order than m-’ or 
its main part can be expressed as Am-‘, 0 < CI 5 1, and the coefficient A is inde- 
pendent of m. In fact, it seems reasonable to consider the term o(l) very close to 
the difference between the free energy computed for a finite lattice with periodic 
conditions and the corresponding thermodynamic limit. If it is true, then this term 
will decay exponentially with m. At the end of this section the validity of this 
assumption is discussed by considering the high-temperature expansion for the 
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boundary free energy J: Mainly it is justified by the numerical results which are 
derived from this assumption and is presented in the next section. 

Under assumption (5.5), multiplying (5.2) by m, and subtracting the result from 
(HZ - 1) x (4.1 j, vve have 

J<n, n+ i can be taken as an approximation to the boundary free energy per uni; 
length. 

It is clear that similar expressions hold for the approximation to the boundary 
internal energy and the approximation to the boundarjr specific heat. They are 
denoted by e,,,, ,I + , , Cg,. n + 1, respectively. 

From (5.6) an expression for the boundary free energy f of the Ising model with 
free boundary conditions can be derived. The expression (5.4) can be written as 

lim 2-1~~(~~-1)(15,-l,,,-~nr.,l+l)=.I: (5.7) 
m, n - x 

In (5.7) we allow n go to infinity before KY. Then 

lim 2 ~ ‘nz(m - 1 )($,,, - 1 - d,! I =J; (5.8 
1x - 32 

where 

d,= lim cL,~+~ n-ta =;iugi,, : 5.9 

which can be obtained from (4.4), and A, is the maximum eigenvalue of the 2”’ by 
2” matrix L given by (3.8). Here, to indicate the dependence of 2, on 1~2, we 
it by A,(m). Thus the expression (5.8) can be written as 

1 
f= lim -log 

( 

/?‘I’( m - 1)‘ 

nz 4 zc 2 1. /Z’r-l(m), 

Expression (5.10 j exhibits the relation between the eigenvalue of the transfer matrix 
and the boundary thermodynamic functions. 

Now we briefly discuss the validity of assumption (5.5). In order to show that 
assumption (5.5) is reasonable, we compare thefdefined by (2.10) with expression 
(5.7) which is derived on the basis of (5.5). However, it is difficult to do this 
analytically. Instead, we adopt an alternative way: i.e., we compare the two high- 
temperature expansions for f which are derived from (2.10) and (5.7) separately. 
and consider only the first few terms. 

It is well known that at high temperature the free energy 4 can be expanded as 
a series in U= tanh(z) and the expansion coefficients can be calculated by a com- 



128 LEI GONG-YAN 

binatorial approach (see [I, 51). If we consider only the first few terms of the series, 
the corresponding coefficients can be obtained easily and d can be written as 

q4 = log 2 + 2 log cash(p) + 0’ + 209 + ;CD” + o(o”!). (5.11) 

For the free energy of an rn x n Ising model with free edges, the corresponding 
expansion is 

0 .,,.=10,,+(2-(;+;)) logcosh(p)+(;-I)($+’ 

+(2-3(;+;)+&“+(;-$(A+;) 

+y; u8+o(d0). 
> 

In (5.12) let n go to infinity. We have 

(5.12) 

(5.13) 

Substituting (5.11) and (5.13) into (2.10), or substituting (5.12) into (5.7), we 
obtain the same expansion: 

f= -2-l 
( 

21 
logcosh(j3)-o”+3w6+tw8 

> 
+o(o’~). (5.14) 

To some extent this result shows us that assumption (5.5) is reasonable. Here we 
have considered only the coefficients of the terms to og because when the power 
increases the computation of the corresponding coefficient becomes very com- 
plicated. 

6. NUMERICAL RESULTS AND DISCUSSION 

In this section we present and discuss some numerical results. First, the 
approximate bulk thermodynamic functions computed by the various factored solu- 
tions as well as the two further acceleration methods, i.e., the scaling and the extra 
linear extrapolation algorithm, are given. From these results the different methods 
can be compared. Furthermore, the boundary thermodynamic functions computed 
by the extra linear extrapolation algorithm from which the algorithm is tested, are 
displayed. Finally, we estimate the critical point by combining the different numeri- 
cal results with the finite-size-scaling theory. 
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For the bulk thermodynamic functions, our results can be compared with 
[II, 141, in which the N x N Ising model with free edges has been computed by the 
Monte Carlo method for Ns 100. Our methods, i.e., the particular factored 
solution, the scaling, and the extra linear extrapolation, have shown much faster 
convergence than the Monte Carlo. For the boundary thermodynamic functions of 
the Ising model our numerical results are apparently the first and their convergence 
looks good. The approximate boundary free energy, internal energy, and specific 
heat are consistent with the theoretical predictions and reveal the specific features 
of the thermodynamic functions. Our estimate for the critical point is also better 
than that of the Monte Carlo method and comparable with the numerical renor- 
malization group results in e.g., [I, 5; II, 151. 

In Tables Ia-Ic we display d,,,, ,2 + I, l-‘,,,, + I, and C,, lil + , computed by the factored 
solution by column for m = 4, 8: 12 and some /3. For the sake of comparision the 
corresponding values for an 8 x x lattice as well as the exact values of & LT. and 
C are also given. In Tables IIa-IIc and IIIa-IIIc we display qSmX mq U, X mq and 
c,,; x m computed by the general (1= 7) and particular factored solution for the same 
HE and ,6’, respectively. In Tables IVa-IVc and Va-Vc the same thermodynamic 
functions computed by the scaling method and the extra linear extrapolation 
algorithm are displayed. For the scaling method the lattices are m x m. For the 
extra linear extrapolation, according to formula (5.3) and similar formulas, the 
relevant maximum lattice size is M x (m + 1). However, the computational labor 
required by the scaling is still much greater than the latter because it is an iterative 
algorithm and uses spin bath. 

Eooking at these tables we can come to the following conclusions: 

(I ) Except for the specific heat for temperatures near or below criticality, our 
numericai approximation to any thermodynamic function converges reasonabiy 
well to the corresponding thermodynamic limit as the lattice sizes increase. The 
convergence is most rapid for the free energy, less rapid for the internal energy and 
specific heat. 

(2) The results computed by the factored solution by column for a finite lattice 
are almost the same as those for an infinitely long Ising strip. It means that the 
factored operation accelerates the convergence to the thermodynamic limit. 

(3) When we compare the results in Table I with those in Tables II and III: we 
know that the factored solution by column has the lowest accuracy and the 
particular factored solution gives the most satisfying results. This result supports 
our preceding discussions. 

(4) From Tables IV and V, we find that the solutions of the scaling method and 
the extra linear extrapolation algorithm are more accurate than the particular 
factored solutions. The scaling and the extra linear extrapolation algorithm are 
comparable in accuracy. 

In Tables Ic, IIc, IIIc, IVc, and Vc, near criticality the approximate specific heats 
do not converge seriously. The reason is that the lattice sizes calculated by us are 
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TABLE I 

a. Convergence of factored solution by column to the free energy Q 

B 

0.1 0.7020 0.7026 0.7028 0.7026 0.7032 
0.2 0.7291 0.7318 0.7327 0.7318 0.7345 
0.3 0.7770 0.7838 0.7860 0.7838 0.7906 
0.4 0.8496 0.8645 0.8694 0.8645 0.8794 
0.45 0.8967 0.9188 0.9266 0.9189 0.9436 
0.5 0.9515 0.9843 0.9968 0.9845 1.026 
0.6 1.083 1.143 1.166 1.144 1.210 
0.7 1.237 1.321 1.349 1.321 1.404 
0.8 1.404 1.504 1.537 1.504 1.602 
0.9 1.576 1.689 1.720 1.689 1.801 
1.0 1.750 1.876 1.917 1.876 2.001 

4 4. 5 4 8.9 qS(exact) 

b. Convergence of factored solution by column to the internal energy Lr 

P U 1. 5 u 8. 9 u 12,13 u 8xz.z U(exact) 

0.1 0.1774 0.1904 0.1947 0.1904 0.2034 
0.2 0.3699 0.3991 0.4088 0.3991 0.4282 
0.3 0.5944 0.6495 0.6679 0.6495 0.7045 
0.4 0.8664 0.9826 1.023 0.9831 1.106 
0.45 1.019 1.196 1.271 1.199 1.513 
0.5 1.174 1.421 1.533 1.419 1.746 
0.6 1.446 1.717 1.796 1.720 1.909 
0.7 1.620 1.812 1.862 1.810 1.964 
0.8 1.702 1.846 1.891 1.846 1.985 
0.9 1.734 1.861 1.905 1.861 1.993 
1.0 1.745 1.868 1.911 1.868 1.997 

c. Convergence of factored solution by column to the specific heat C 

P C 4. 5 c 8.9 C 12, 14 C 8xm C(exact) 

0.1 0.0182 0.0196 0.0201 0.0196 0.0210 
0.2 0.0822 0.0899 0.0925 0.0899 0.0977 
0.3 0.2219 0.2543 0.2650 0.2543 0.2863 
0.4 0.4742 0.63 12 0.7021 0.6353 0.8626 
0.45 0.6285 0.9163 1.100 0.9294 1.605 
0.5 0.7627 1.066 1.140 1.002 0.7240 
0.6 0.8215 0.5928 0.4307 0.5546 0.3134 
0.7 0.595 1 0.2535 0.2213 0.2584 0.1581 
0.8 0.3240 0.1380 0.1233 0.1474 0.0830 
0.9 0.1480 0.0808 0.0698 0.0877 0.0441 
1.0 0.0604 0.0477 0.0399 0.0444 0.0234 
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TABLE II 

a. Convergence of general factored solution (I= 71 to the free energy 4 

B 4 x 4 array 8 x 8 array 12 x 12 array 4(exact) 

0.: 0.7032 0.7032 0.7032 ,a.7032 
0.2 0.7345 0.7345 0.7345 0.7345 
c.3 0.7901 0.7905 0.7905 0.7906 
0.4 0.8754 0.8785 0.8790 0.8794 
0.45 0.93 10 0.9383 0.9404 0.9436 
0.5 0.9960 1.011 1.016 1.026 
0.6 1.153 1.188 1.200 1,210 
0.7 1.337 1.387 1.398 1.404 
0.8 1.537 1.590 1.598 1.6C2 
0.9 1.744 1.792 1.798 1.801 
1.0 1.953 1.995 1.999 xc1 

b. Convergence of general factored solution (I= 7) to the internal energy L: 

B 4 x 4 array 8 x 8 array 12 x 12 array i:( exact ) 

0.1 0.2034 0.2034 0.2034 0.2034 
0.2 0.4274 0.4282 0 4282 0.4282 
0.3 0.6943 0.7032 0.7042 G.7045 
0.4 1.022 1.079 1.094 1.106 
0.45 1.205 1.320 1.369 1.513 
0.5 1.392 1.576 1.663 1.746 
0.6 1.724 1.923 1.945 1.909 
0.7 1.942 2.019 1.994 1.964 
0.8 2.047 2.03 1 2.004 I.985 
0.9 2.082 2.026 2.Ga 1.993 
1.0 2.086 2.020 2.004 1.997 

c. Convergence of general factored solution (I= 7) to the specific heat C 

s 4 x 4 array 8 x 8 array 12 x i2 array Ccexact ) 

0.1 0.02 10 0.0210 
0.2 0.0967 0.0976 
G.3 0.2662 0.2828 
0.4 0.5714 0.7166 
0.45 0.7567 1.038 
G.5 0.9201 1.221 
0.6 1.015 0.69 15 
0.7 0.7617 0.1674 
0.8 0.3994 :OQ53 
9.9 0.1187 -.0543 
i9 -.0049 p.0645 

0.0210 0.9210 
O.G976 5.0977 
0.2853 0 2863 
0.7E?O6 0.8626 
I.223 I.605 
l.303 0.7249 
3.376i G.3 134 
0.0941 O.;58l 
9.0214 0.0830 
-.%3G O/J441 
-.0106 0.0234 
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TABLE III 

a. Convergence of particular factored solution to the free energy 4 

B 4 x 4 array 8 x 8 array 12 x 12 array d(exact) 

0.1 0.7032 0.7032 0.7032 0.7032 
0.2 0.7345 0.7345 0.7345 0.7345 
0.3 0.7904 0.7905 0.7906 0.7906 
0.4 0.8769 0.8789 0.8792 0.8794 
0.45 0.9339 0.9396 0.9411 0.9436 
0.5 1.001 1.014 1.019 1.026 
0.6 1.163 1.196 1.205 1.210 
0.7 1.355 1.396 1.402 1.404 
0.8 1.560 1.579 1.601 1.602 
0.9 1.769 1.798 1.800 1.801 
1.0 1.979 1.999 2.000 2.001 

b. Convergence of particular factored solution to the internal energy U 

P 4 x 4 array 8 x 8 array 12 x 12 array U(exact) 

0.1 0.2034 0.2034 0.2034 0.2034 
0.2 0.4280 0.4282 0.4282 0.4282 
0.3 0.6997 0.7041 0.7044 0.7045 
0.4 1.043 1.089 1.099 1.106 
0.45 1.239 1.345 1.389 1.513 
0.5 1.440 1.617 1.699 1.746 
0.6 1.792 1.957 1.949 1.909 
0.7 2.004 2.017 1.980 1.964 
0.8 2.085 2.014 1.992 1.985 
0.9 2.094 2.008 1.997 1.993 
1.0 2.078 2.005 1.999 1.997 

c. Convergence of particular factored solution to the specific heat C 

P 4 x 4 array 8 x 8 array 12 x 12 array C(exact) 

0.1 0.0210 0.0210 0.0210 0.0210 
0.2 0.0974 0.0976 0.0977 0.0977 
0.3 0.2743 0.2851 0.2860 0.2863 
0.4 0.6082 0.7498 0.8070 0.8626 
0.45 0.8139 1.108 1.302 1.605 
0.5 0.9901 1.288 1.330 0.7249 
0.6 1.043 0.5614 0.2388 0.3134 
0.7 0.6727 0.0347 0.078 1 0.1581 
0.8 0.2236 -.0443 0.0503 0.0830 
0.9 -.0700 -.0352 0.0282 0.0441 
1.0 -.2002 -.023 1 0.0134 0.0234 
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TABLE IV 

a. Convergence of scaling method to the free energy 4 

B 4 x 4 array 8 x 8 array 12 x I2 array &exact 1 

0.i 0.7032 0.7032 3.7032 0.7032 
0.2 0.7345 0.7315 0.7345 0.7345 

0.3 0.7908 0.7906 3.7906 0.7906 
0.4 0.8808 0.8795 0.8794 0.8794 
0.45 0.9433 0.9424 0.9426 0.9436 
C.5 LOi 1.021 1.023 I.026 
0.6 1.197 1.205 I.208 1.210 
6.7 1.392 1.400 I.402 1.404 
0.8 1.593 1.599 1.401 i-602 
6.9 1.794 1.799 I.800 1.801 
1.0 1.996 1.999 2.000 ?.ooi 

b. Convergence of scaling method to the mternal energy L: 

F 4 x 4 array 8 x 8 array I? x 12 arm) L;(exact) 

0.1 0.2034 0.2034 0.2034 G.2034 
0.2 0.4285 0.4282 0.4282 0.4’82 
0.3 0.7098 0.7045 0.7044 0.7045 
0.4 1.121 1.110 1.107 1.106 
0.45 1.381 1.418 1.441 1.513 
0.5 1.621 1.700 1.731 1.?46 
0.5 1.900 1.923 1.9;9 1.9c9 
(1.7 1.990 1.979 1.971 1.964 
0.8 2.013 1.995 I.990 1.985 
0.9 2.016 2.OGo 1.997 1.993 
1.G 2.014 2.002 1.999 1.997 

c. Convergence of scaling method to the specific b.eat C 

B 4 x 4 array 8 x 8 array 12 :( 12 a:ra) C(exac: ) 

0.1 0.0210 0.0210 0.0210 0.0210 
G.2 0.0981 0.0976 0.0977 0.0977 
0.3 0.2970 0.2865 0.2860 0.2863 
0.4 0.7974 0.8612 0.8692 0.8620 
0.45 1.057 1.327 1.5G4 1.605 
0.5 1.056 1074 0.9560 0.7249 
0.6 0.5642 0.3539 0.3096 0.3134 
0.7 0.2153 0.1378 0.1435 0.1581 
ij.8 0.0572 0.0572 0.0703 0.0830 
6.9 -.0090 0.02 12 0.0255 0.0441 
I.0 -.0335 0.0450 0.0149 0.0234 
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TABLE V 

a. Convergence of linear extrapolation algorithm to the free energy 4 

i 4. 5 i&.9 &exact) 

0.1 0.7032 0.7032 0.7032 0.7032 
0.2 0.7345 0.7345 0.7345 0.7345 
0.3 0.7906 0.7906 0.7906 0.7906 
0.4 0.8791 0.8793 0.8794 0.8794 
0.45 0.9389 0.9416 0.9423 0.9436 
0.5 1.010 1.020 1.024 1.026 
0.6 1.187 1.209 1.210 1.210 
0.7 1.391 1.405 1.404 1.404 
0.8 1.602 1.602 1.602 1.602 
0.9 1.809 1.801 1.801 1.801 
1.0 2.012 2.000 2.000 2.001 

b. Convergence of linear extrapolation algorithm to the internal energy U 

P 04, 4 08, 9 0 12.13 U(exact) 

0.1 0.2034 0.2034 0.2034 0.2034 
0.2 0.4284 0.4282 0.4282 0.4282 
0.3 0.7062 0.7045 0.7045 0.7045 
0.4 1.083 1.103 1.106 1.106 
0.45 1.312 1.398 1.432 1.513 
0.5 1.551 1.717 1.774 1.746 
0.6 1.943 1.967 1.912 1.909 
0.7 2.106 1.964 1.962 1.964 
0.8 2.099 1.980 1.985 1.985 
0.9 2.045 1.997 1.993 1.993 
1.0 2.005 1.996 1.997 1.997 

c. Convergence of linear extrapolation algorithm to the specific heat C 

B G, 5 c 8. 9 CT 12.13 C(exact) 

0.1 0.0210 0.0210 0.0210 0.0210 
0.2 0.0979 0.0977 0.0977 0.0977 
0.3 0.2874 0.2864 0.2863 0.2863 
0.4 0.6970 0.8213 0.8524 0.8620 
0.45 0.9644 1.321 1.548 1.605 
0.5 1.173 1.413 1.171 0.7249 
0.6 1.026 0.0580 0.1981 0.3134 
0.7 0.2680 0.0418 0.1722 0.1581 
0.8 -.2966 0.0996 0.0866 0.0830 
0.9 -.4129 0.0636 0.0445 0.0441 
1.0 p.2950 0.0323 0.0234 0.0234 
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sti!l not large enough. In principle, the extrapolations included in our algorithms 
are based on the decomposition of the thermodynamic quantities into the bulk 
terms plus boundary corrections. Strictly speaking, this decomposition is correct 
only for the temperature region which is away from the criticality and marked 
by the rounding temperature T*. Therefore, if we use the extrapolation at the 
criticality, the effects are not clear. However, as the lattice sizes increases, the 
temperature T* -+ T,, we can expect that our extrapolation methods wil 
effective for more temperatures which are close to T,. 

In Fig. 3 the variation of the approximate bulk specific heat t”,?, x ,m + I: compu!ed 
by the extra linear extrapolation algorithm with fi is shown. Under the condition 
of finite-size lattice, the logarithmic singularity in the specific heat transforms into 
a smooth peak. When the lattice size increases, the peak moves to the critical point, 
at the same time the width of the peak becomes narrow and the height of the peak 
increases. It suggests that the critical exponents OL = ‘LX’ = OIOg. It is also noted tha: 
the curve of the approximate specific heat given by the extra linear extrapolation 
algorithm for fixed err has a small oscillation at j3 > ,B,. When m increases the 
amplitude of the oscillation is reduced and the position at which the oscillation 
occurs moves to the critical point. If we carefully observe the particular factored 
solution, a similar phenomenon can be found. However, for the factored solution 
the oscillation is mild. Without separating the boundary effect this phenomenon 
could not be observed. 

0.50 

i 

0.00 

l- 
-0.50 1 L I ,;3 

0.00 0.50 1.00 

FIG. 3. The bulk specific heat computed with the extra !inear extrapolation algorithm. T?e trinng!es 
are :he particular factored solution for M = 12. 
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In Figs. 4a, 4b, and 4c, the curves of the approximate boundary free energy 
f ,n. m + 1 ) the approximate boundary internal energy e,,,,, i, and the approximate 
boundary specific heat ct,, m + i computed by formula (5.6) and similar formulas for 
fir = 5, 10, and 15 are shown. 

An interesting point is that from Fig. 4a, we guess that when the temperature 
goes to zero, the boundary free energy can be approximated by -j/2 very well. We 
also compute the boundary free energy by the series expansion (5.14) for /? =O.l, 
0.2, 0.3, and 0.4. The corresponding numerical results are -0.0025, -0.0108, 
-0.0270, and -0.0562, respectively. They are very close to the results shown in 
Fig. 4a, which signifies that assumption (5.5) is reasonable and formulas (5.6), 
(5.10), and (5.14), which express the approximate or exact boundary free energy, 
are correct. 

In Fig. 4b, for the boundary internal energy as for the bulk specific heat, the 
logarithmic singularity is replaced by a smooth peak. As lattice size increases, the 
width of the peak becomes narrow and its position moves to the critical point from 
the low temperature side. In Section 2 it was stated that in the thermodynamic 
limit, superimposed on the logarithmic infinity, a discontinuity exists in e at B,. 
Under the finite-lattice condition this phenomenon is shown in the nonsymmetry of 
the e mm+1 curves. The interesting point is that although we have calculated only 

FIG. 4a. The boundary free energy computed with the extra linear extrapolation algorithm. 
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FIG. 4b. The boundary internal energy computed with the extra iinear extrapolation algorithm. 

FIG. 4c. The boundary specific heat computed with the extra linear extrapolation algorithm. 
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relatively small lattices, at the two ends of these e, ,n+ I curves the computed values 
appear to converge already. If the values at the &o ends, for example, at fl= 0.1 
and /? = 2.5, are compared, it is found that for each m the difference is almost 
exactly 0.5, i.e., the jump which occurs at fi, in the thermodynamic limit. 

In Fig. 4c for every m the two ends of the CI m+ 1 curve approach the x-axis from 
the positive and the negative direction, respedtively. In the middle of the curve a 
positive maximum continuously but rapidly transforms into a negative minimum. 
This graph corresponds to the singularity t-’ in the thermodynamic limit. As m 

increases both the maximum and the minimum move to the critical point from the 
low temperature side, and at the same time the distance between them decreases; 
however, the amplitude increases. It is predictable that the position of either the 
maximum or the minimum will coincide with PC in the thermodynamic limit and 
the amplitude will go to infinity at the same time. 

Next, we estimate the critical point. From the numerical computation we know 
that the approximate bulk specific heat obtained by any method mentioned for 
each finite lattice has a maximum which occurs at a certain temperature. This tem- 
perature can be considered as an m-dependent pseudo-critical point. Similarly, for 
the boundary thermodynamic functions we can also define the pseudo-critical point. 
For the boundary internal energy the pseudo-critical point is the temperature at 
which for a certain finite lattice the approximate boundary internal energy achieves 
its maximum value. For the approximate boundary specific heat, two different 
pseudo-critical points can be defined-one is the temperature at which the bound- 
ary specific heat achieves its maximum; the other is that at which the minimum 
boundary specific heat occurs. 

The real critical temperature can be estimated as follows. For each group of data 
which is given by one method for one thermodynamic function, we assume that the 
pseudo-critical point is a linear function of m ~ *, i. e., BmaxCmin) = a, + a,m-‘. Then, 
a, and a, can be estimated by the least-squares method. It is clear that the value 
of a, can be considered as an estimate of the real critical point and this estimate 
depends not only on the type of pseudo-critical point but also on the lattice sizes 
used in the least-squares computation. 

In Table Via the approximate critical points estimated from the maximum bulk 
specific heat are given. The data in different rows correspond to different methods 
which have been used to compute the bulk specific heat. In Table VIb the 
approximate critical points estimate from different boundary thermodynamic quan- 
tities are shown. 

We recall that the exact critical point value is 0.440685.... . From Table Via, we 
know that the scaling method gives the best estimate and for the particular factored 
solution the estimate has the lowest accuracy. For the scaling method if 
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TABLE VI 

a. The critical point estimated from maximum bulk specific heat values 

Numerical 
method 

Lattice 
size 

Approximate Lattice 
critical point size 

Approximate Lattice 
critical aoint size 

Approxima:e 
critical point 

Factored solution m = 4,6. 8, 0.4346 m = 6, 8. IO 0.4373 tx = 8. 10 0.438F 

10 
Scaling method m =4, 6, 8, 0.4435 m = 6, 8. 10 0.4420 m= 8. 10 0.4415 

10 
Extra linear m =4, 6, 8, 0.4311 m = 6, 8, IO 0.4391 r~ = 8, 10 0.4395 

extrapolalion 10 

b. The critical point estimated from boundary thermodynamic 
function computed by extra linear extrapolation algorithm 

Type of pseudo- 
critica: point 

Lattice 
size 

Approximate Lattice 
critical point size 

Approximate Lattice 
critical point size 

Approxirnaie 
critica! point 

Maximum internal ?>I = 11, 12, 0.4434 m = 13, 14, G.4432 !Y = 14, 15. 0.4430 
energy 13, 14, 15 15 

Maximum specific m = 11, 1’2, 0.4406 r?? = 13. 14. 0.4407 I,?= 14. 15 0.4437 
heat 13. 14, 15 15 

Minimum specific vi = 11, 12, 0.4388 m = 13, I?. 0.4393 m = 14. 15 6.4395 
hear 13. 14. 15 15 

estimate from the scaling. If for the extra linear extrapolation algorithm we use the 
pseudo-critical points for m = 14, 15, we obtain, the approximate critical point 
0.4403, whose relative error is less than 0.001. From Table VIb we know that the 
estimate computed from the maximum boundary specific hear has the highese 
accuracy. If in the least-squares method HZ = 13, 14, 15 are considered, the exact 
result is given in four significant digits. In the last column of Table VIb the 
maximum relative error is only 0.005. 

The above results can be compared with those obtained by other numerical 
methods. In [I, S], the approximate critical point computed by the cumu 
expansion method was given. The value is 0.4302 and has the relative error 0,011. 
In [II, 141, the Nx N Ising model for iV$ 100 was computed by the Monte Carlo 
method, and the autor declared that the estimate for the critical point is correct to 
better then 0.005. It can be compared with the maximum error in the last colrrmn 
in Table VIb. In [II, 151, Nightingale obtained some critical point estimates which 
are slightly better than ours, but it should be pointed out that in [II. 151 the 
critical point was estimated by means of the analytic expression of the inverse 
correlation length of an n x ~3’ Ising strip. Thus, it is not a ‘“purely” numerical 
result. 

Finally, we briefly review the particular factored solution, the scaling met 
and the extra linear extrapolation algorithm. 
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The particular factored solution almost eliminates the finite-size effect due-to the 
“dangling bonds.” It is a satisfying member in the factored solution family and 
accelerates the convergence of finite-lattice quantities to the thermodynamic limit. 
Although its accuracy is lower than that of the scaling and the extra linear 
extrapolation algorithms, the method is very simple and desirable. 

The scaling method gives high accuracy, especially when the lattice size is small. 
With the lattice size increasing, the thermodynamic functions computed by the 
scaling converge to their thermodynamic limits. From computational results the 
critical point can be estimated better. However, this method requires more com- 
putational time and storage space, which restricts its use. If we could combine this 
method with Monte Carlo, it might produce a more efficient and flexible method. 
Ideas somewhat similar to this approach have been considered by Goodman and 
Sokal [II, 111. 

The extra linear extrapolation algorithm also gives high accuracy and does not 
need much increase of computational labor. In addition, this algorithm can be used 
to compute the boundary thermodynamic functions and give satisfactory results. In 
further work we shall study how the boundary magnetic quantities for a lattice 
model can be computed with a similar algorithm and try to combine the extra 
linear extrapolation algorithm with other methods. 
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